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Abstract

A (64, 40, 8) subcode of the (64, 42, 8) third-order Reed-Muller code is proposed to NASA

for high-speed satellite communications. This code can be either used alone or used as an

inner-code in a concatenated coding system with the NASA standard (255,223, 33) Reed-

Solomon code as the outer code to achieve high performance with reduced decoding com-

plexity. This Reed-Muller subcode has a relatively simple and parallel trellis structure and

consequently can be decoded with a group of identical and relatively simple Viterbi decoders

in parallel to achieve high-speed decoding. In this report, the complexities of various sec-

tionalized trellis diagrams are analyzed. Based on this analysis, the trellis diagram with the

smallest overall complexity will be used for the implementation of a high-speed decoder.
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A (64,40, 8) subcode of the third-order Reed-Muller (RM) code is proposed to NASA

for high-speed satellite communications. This RM subcode can be used either alone or as an

inner code of a concatenated coding system with the NASA standard (255,223, 33) Reed-

Solomon (RS) code as the outer code to achieve high performance with reduced decoding

complexity. It can also be used as a component code in a 3-level bandwidth efficient coded

8-PSK modulation system together with the (64, 7, 32) first-order and (64, 57, 4) fourth-order

RM codes.

The (64,40,8) RM subcode has a relatively simple and parallel trellis structure and

consequently a group of identical and relatively simple Viterbi decoders can be devised to

process the decoding in parallel. This not only simplifies the decoding complexity but also

speeds up the decoding process. As a result, a high-speed decoder can be implemented. For

the AWGN channel using BPSK transmission, this code achieves 5.3 dB coding gain over

uncoded BPSK at the bit-error rate (BER) of 10 .6 as shown in Figure 1. If this code is used

as the inner code in a concatenated coding system with the NASA standard (255,223, 33)

RS code as the outer code, the concatenated system will achieve error-free communication

for signal-to-noise ratio (SNR) greater than 3 dB as shown in Figure 1. It achieves a 7.6 dB

coding gain over the uncoded BPSK system at the BER of 10 -6. The (64, 40, 8) RM subcode

has a rate of 0.626 bits/symbol which is higher than that of the NASA standard rate-l/2

64-state convolutional inner code. In performance, the (64, 40, 8) RM code achieves a 0.5 dB

less coding gain than the NASA standard convolutional inner code. Because the (64, 40, 8)

RM subcode has a higher rate and can be implemented at a much higher decoding speed,

it is an attractive alternative to replace the NASA standard convolutional inner code in a

concatenated coding system with only a small loss in coding gain.

In this report, we investigate the complexities of various sectionalized trellis diagrams for

the (64, 40, 8) RM subcode. Particularily, we investigate the complexities of the 4-section, 8-

section and 16-section trellis diagrams for the (64, 40, 8) RM subcode. Based on this study,

we will choose the trellis diagram which has the smallest overall complexity for decoder

implementation.



2. Trellis Complexity of Binary Linear Block Codes
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Any linear block code can be decoded by applying the Viterbi decoding algorithm

to its minimal trellis using either Euclidean distance or correlation as the distance metric

[1]. For BPSK transmission over an AWGN channel, the latter has distinct computational

and implementation advantages. We define the computational complexity of any trellis as

the number of addition equivalent operations needed to decode a single real valued received

vector into the maximum likelihood solution (the codeword which has the highest a posteriori

probability) by using the Viterbi algorithm based on the trellis. In a paper by Kasami et.

al. [3], the computational complexity of a minimal L-section trellis of a block code has been

calculated in terms of: (1) the number of real number comparisons, (2) the number of real

number multiplications and (3) the number of real number additions. In the present case,

by choosing to maximize the correlation between the received vector and the codewords we

avoid the use of real number multiplications while decoding a received vector. Furthermore

the complexity of a real number comparison is roughly the same as that of a real number

addition. Hence we are justified in expressing the computational complexity of the various

trellises in terms of the number of real number addition equivalent operations.

Definition: 1 An L-section trellis diagram ]'or a binary linear (N,K) block code C with

N = LM is a directed graph T with L + 1 levels (henceforth called depths) labelled

0, M, 2M,..., ML and vertez sets So, SM, . •., SML (henceforth called state sets) such that

1. So = {po},

respectively,

.

.

SN _- SLM : {flF} where po and PF denote the initial and final states

There are edges (henceforth called branches) connecting states in adjacent state sets

SiM, S(I+I)M, 0 <_ i < L with each branch labelled by a binary M,tuple and originating

at a state in SiM.

There is a directed path from the initial state po to the final state PF with label sequence

Ul, u2,. . . , UL if and only if

(ul o o...o uL)

is a codeword in C where o stands for concatenation of two sequences.

[

Let C denote an (N,K,d_n) linear block code. Let L,M be positive integers such

that LM = N. Given a L-section trellis, the set of states at the end of each section
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{So, SM, S2M,..., S(L-1)M, SLM}, we define a sequence {So, SM,..., 8LM} called the state

dimension profile (SDP) of the trellis and given by SiM = log2(ISiMI). The minimal L-

section trellis of a code C has the property that every component of its SDP is less than or

equal to the corresponding component in the SDP of any other proper L-section trellis for

C. The maximum among the N + 1 components in the SDP of the minimal N-section trellis

for C is denoted sm_x(C) and we will denote the maximum of the components in the SDP

of the minimal L-section trellis for C as Sm_x,z(C). For a binary N-tuple v = (vl,..., vm),

let ph,h,[v] denote the (h'-h)-tuple (vh+l,...,vh,) and let

ph,h,[C] = {ph,n,[c] : c E C}

Let Ch,h, be the linear subcode of C consisting of all codewords whose components are all

zero except for the (h' - h) components from the (h + 1)-th bit position to the h'-th bit

position.

The computational complexity of any trellis T is denoted A(LF) and is composed of two

components, one as a result of branch metric computations denoted As(T) and the other

due to the state metric computations and comparisons denoted AL(T) yielding A(T) =

As(T) + AL(T).

In a L-section minimal trellis for a block code, there may be a set of parallel branches

between two adjacent states. In such a case, we call the entire set of parallel branches a

composite branch. Each composite branch in the i-th section 1 <_ i _< L, is made up of

2 P_ parallel branches where Pi is the dimension of the subcode denoted CI__I)M,iM aS shown

in [2]. In the i-th section of a L-section trellis for a linear block code 1 < i < L, the number

of distinct branch metrics that have to be computed is 2 z)_ where Di is the dimension of the

subcode P(i-1)M,iM(C) and this number is much less than the total number of branches. Di

is the rank of the submatrix formed by M columns from the ((i - 1)M+ 1)-th to the (iM)-th

column of the generator matrix of the code and is upper bounded by M. For 1 < i < L, let

the number of composite branches merging into any state s E SiM be 25_M (it is the same for

any state in SiM). For 0 _< i < L, let the number of composite branches emanating from

any state s E SiM be 2 _M, (it is the same for any state in SIM). 5iM is related to /_(i-1)M aS

follows:

(_iM = 8(i-1)M + /_(i-1)M -- 8iM

Therefore the {5iM : 1 <_ i <_ L} can be computed from the SDP of the code and {AiM "

0 _< i < L}. Based on the theory of L-section trellises [2, 4] it can be shown that

,_(i-_)M = dim(C(i__)M,N) -- dim(CiM,N) -- Pi

These dimensions can be easily determined from the trellis oriented generator matrix of the

code [4].
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For the special case of Reed-Muller codes and L = 21 for a positive integer l, since the

L-section minimal trellis is symmetri c about the midpoint [2], i.e., the last L/2 sections form

a mirror image of the first L/2 sections and we have the following.

SiM : S(L-i)M, 0 < i < L/2, and )_iM : 8(L-i)M, 0 _ i < L

The five parameters 8iM , DiM, PiM, hiM, _iM discussed above are essential to calculating the

computational complexity of a minimal trellis.

Consider the operation of a Viterbi decoder using a L-section minimal trellis of a linear

block code. In order to compute the state metric of a state s E SiM, 1 < i < L, the decoder

has to pick the minimum among 26_M candidates. For 1 <__j _< 2_M, the j-th candidate

metric is given by the sum of the metric of the j-th composite branch and the metric of

the originating state of the j-th composite branch. Thus are 26_M additions and 26_M - 1

comparisons are required to compute the state metric of s. Hence we have the number of

addition equivalent operations as

L

AL(T) = _2 s' (2 6'M+1 - 1) (2.1)
i=1

In the i-th section of the trellis, the decoder has to compute the 2 D_ distinct simple

branch metrics at the cost of (M - 1) additions per branch metric. If the branch metric

computations are done in the most parallel manner with 2 D_ adders operating simultaneously

in parallel and independent of each other, a total of 2D_(M- 1) additions is required. There

are other slower methods of computing the same set of branch metrics that use lesser number

of additions. In addition to the distinct simple branch metrics, the branch metric of each

composite branch needs to be computed. The branch metric of a composite branch is the

minimum of the branch metrics of the 2 P_ simple branches that form a composite branch.

Given the branch metrics of all the simple branches, 2 P_ - 1 comparisons are required to

compute the metric of a composite branch. Therefore, the number of additions required to

compute the metric of all composite branches is given by the number of distinct composite

branches times (2 P_ - 1). Based on the above discussion we have,

L L

As(T) = Y'_21)'(M- 1)+ _ #(Distinct composite branches in section-i) (2 P_ - 1) (2.2)
i=1 i=1

Based on the above discussion, a study of all the possible L-section trellises for the (32, 16, 8)

Reed-Muller code yielded Table 1.

From Table 1, it is evident that the computational complexity as well as the maximum

state space dimension depend on the number of sections in the trellis of the code. For the

i

i
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above code, although A(T) reaches a minimum of 4,064 when L = 8, the trellis with L = 4

and A(T) = 6,847 is more suitable for implementation because while the former has only

2 parallel isomorphic trellises with each subtrellis having Smax = 128 states the latter has 8

parallel isomorphic subtrellises with each subtrellis having Sm_x = 8 states.

1, Trellises with Parallel Structure

The objective of this section is to show that we can build a trellis for a linear block

code say C which is a union of certain desired number of parallel isomorphic subtrellises.

Although this trellis is not minimal, it has a maximum state space dimension less than or

equal to Smax(C). The conditions under which such a trellis construction is possible and

an upper bound on the number of such parallel subtrellises is derived. In some cases the

minimal trellis itself possesses a parallel structure. The number of such parallel subtrellises

(if any) in the minimal trellis is derived.

Suppose we want to build a trellis for linear block code C as a union of 64 parallel

isomorphic subtrellises. This can be done by first choosing a subcode C _ of dimension 6

less than the dimension of C. Second, we build the trellis for C _. Finally, the trellis for

C can be obtained as the union of 64 parallel isomorphic subtrellises with each subtrellis

being isomorphic to the trellis of C _. The resulting trellis for C may not be minimal. We

prove necessary and sufficient conditions for the existence of a subcode C _ of C such that

the resulting trellis for C has maximum state space dimension Sm_×(C) while retaining the

property of parallelism.

Trellises with parallel structure are desirable for the VLSI implementation of high speed

decoders for block codes. One can envision a decoder consisting of as many parallel processors

as there are parallel subtrellises in the total trellis, each processor producing a best candidate

from its subtrellis after processing it with the Viterbi algorithm. Finally it is a simple matter

of choosing the best codeword among the choices presented by the processors.

Parallel Trellises with Constraint on Maximum State Space Di-

mension

Given a linear block code, several non-isomorphic trellises are possible. The number of

such non-isomorphic trellises is related to the placement of non-attacking rooks on an upper

triangular chess board [5]. However there is a unique proper trellis called the minimal trellis

such that its state space dimension is less than or equal to the state space dimension of any

other proper trellis at every position. A systematic method for the construction of the
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minimal trellis using the trellis oriented generator matrix has been presented in [4]. One

drawback of the minimal trellis is that often it does not have any parallel structure; or the

parallel subtrellises are themselves too large. In such a case it is desirable to explore the

possibility of increasing the parallelism of the trellis even if minimality has to be compro-

raised. A trellis construction with large number of parallel subtrellises for the special case

of Reed-Muller codes has been presented in [6]. This so called primitive decomposition has

the drawback that the state space dimension is very large and usually much larger than

the maximum for the minimal trellis. For many codes the primitive decomposition is quite

attractive.

i

Let G be the trellis oriented generator matrix of an (N, K) binary block code C. Let

r = (rl, r2,..., rN) be a typical row of G. Then, we define the span of r denoted span(r)

to be the smallest interval [i, j], 1 < i < j _< N which contains all the non-zero elements of

r. For a row r whose span is [i,j] we also define an active span of r denoted aspan(r) as

[i,j - 1] if i < j and aspan(r) = ¢ if i = j. The trellis oriented matrix has the following

properties: 1) The leading 1 of every row occurs in an earlier position than the leading 1

of the row below it. 2) The trailing 1 of every row occurs at a different position from the

trailing 1 of every other row. 3) Any other trellis oriented matrix for C has the same set

of row spans although the rows themselves may be different [5]. Let T be the minimal

n-section trellis for C. It can be proved that given the trellis oriented generator matrix of a

code, the state space dimension at any position l is just equal to the number of rows whose

active span contain l [5, 4]. For example, consider the following trellis oriented generator

matrix

1 1 1 1 0 0 0 0 rl /

0 1 0 1 1 0 1 0 r_

0 0 1 1 1 1 0 0 r3

0 0 0 0 1 1 1 1 r4

for which aspan(rl) = [1,3], aspan(r_)= [2,61, aspan(ra)= [3,5] and aspan(r4)= [5,71.

For each l, 0 < l < 8 counting the number of rows which are active at each l for 0 < 1 < 8

yields the state dimension profile (SDP) {0, 1,2, 3, 2, 3, 2, 1, 0}. For 0 _< l <_ N, let st(C)

denote the dimension of the l-th state space of C. Let Sn,a£(C) be the maximum among the

state space dimensions. Define the non-empty set

Im x(C): {z: st(c) : (3.3)

Suppose we choose a subcode C' of C such that dim (C') = dim (C) - 1 and the set of coset

representatives [C/C'] is generated by the single row r E G. From the above statement

about st(C), it is clear that st(C') = st(C) - 1 for exactly those l where r is active, i.e.,

I E aspan(r). For other positions 1 _ aspan(r) we have st(C') = s,(C). Hence we have the

_ 7
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following proposition.

Proposition: 1 If there exists a row r in the trellis oriented generator matrix G for the

code C such that aspan(r) D_ Im.x(C) then, we can form a subcode C' of C generated by

G - {r} such that Smax(C') = Smax(C) -- 1 and/max(C') _D/max(C).

In fact Im+_(C') =/max(C) U {l: s,(C) = Sm_x(C) - 1,I _ aspan(r)}. Since G is a trellis

oriented generator matrix, G _ = G - {r} is also trellis oriented. We can apply the above

proposition again to C' if there exists another row r' E G' with aapan(r') D_ Im_x(C'). This

yields a subcode (_ with dimension smaller by one and Sm_x((_) = Sm_x(C')-- 1. If no such row

r _ exists the proposition cannot be applied and the recursion stops. The above proposition

can be generalized.

Let R(C) be the subset of rows of G, the trellis oriented generator matrix of a code C

consisting of those rows r given by

R(C) : {r E G: aspan(r) D/max(C)} (3.4)

Let d = IR(C)I where IQI denotes the cardinality of any finite set Q.

Proposition: 2 With R(C) defined as above and d = IR(C)I, let 1 <_ d' <_ d. There exists

a subcode C' of C such that Smax(C') = smax(C) -- d' and dim(C') = dim(C) - d' if and

only if there exists a subset R' C R(C) consisting of d' rows of R(C) such that for every

l satisfying st(C) > Smax(C') there exist at least st(C)- Smax(C') rOWS in R' Whose active

span contain l. The set of coset representatives [C/C'] is generated by R'.

Proof: Suppose R' = {r'l,...,r'd, } satisfies the conditions in the hypothesis. Since R' C_

R(C), /max(C) _C aspan(r'i) for 1 < i < d'. Consider the subcode generated by G - R'. For

those I E /max(C), we can determine s,(C') by counting the number of rows r E (G - R')

that are active at that position I. But this number is exactly less than Smx(C) by dq For

l _/max(C) and satisfying st(C) > sm_(C'), we are assured by the hypothesis that st(C)

will be reduced by at least sl(C)- Sm_x(C') thus guaranteeing that Smax(C') = Sm,,_(C)-d'.

To prove the converse, let C' be a subcode of C whose dimension is dim (C) - f and

satisfying s_x(C') = Smax(C) -- d" Without loss of generality we may let C' be generated

G - R' for some subset R' of the trellis oriented generator matrix G of C with I_R'I = d _.

Let "]- be the minimal trellis corresponding to G. Let T' be the minimal trellis for C _. Let

Nt(R') be the number of rows r' in R' such that l E aspan(r'). Then, at every position

l, O < l < N, we have

= s+(c') + > st(C) (3.5)
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since st(C) is the smallest possible state space dimension. Therefore

N,(n') > s,(c)-s,(c') (a.6)

>

For every l at least s,(C) Sm_×(C') rows of R' are active. Also, for every l E Im_x(C) we

have N_(R') >_ Sm_x(C) -- sm_(C') = d'. So all the rows r' E R' satisfy aspan(r') D_ Im_x(C).

Thus R' C_ R(C). I

The utility of the above proposition is that it shows how to choose a subcode C' of

C with sm_x(C') = Sm_(C) -- dim([C/C']), such that one can build a trellis T for C which

although not minimal has the following properties.

1. The maximum state space dimension of T is Sm_x(C).

2. T is the union of 2a_m [C/C'] parallel isomorphic subtrellises 2r_ with each T_ being

isomorphic to the minimal trellis for C'.

3. The smallest such subcode has dimension lower bounded by dim(C)- IR(C)[. i.e.,

the maximum number of parallel subtrellises one can obtain with the constraint that

the total state space dimension never exceed Sm_x(C) is upper bounded by 2tR(C)I with

R(C) as defined above.

The following proposition follows from the above discussion.

Proposition: 3 The logarithm to the base 2 of the number of parallel isomorphic subtrellises

in a minimal L-section trellis for a binary (n, k) linear block code is given by the number of

rows in its trellis oriented generator matrix whose span contain the integers { M, 2M, . . . , (L-

1)M} where N = LM.

I

As an example consider the extended code BCH(32, 21,6) for which the minimal 4-

section trellis has SDP {0, 7, 9, 7, 0}. Any trellis oriented generator matrix for this code has

the following unique set of row spans.

span(r1) = [1,8]

span(r3) = [3, 13]

span(rh) = [5, 12]

span(rT) = [7,21]

span(r2) = [2, 15]

span(r4) = [4, 14]

span(r6) = [6, 18]

span(rs) = [8,25]



span(rg) = [9,161

span(r11) ---- [11,19]

span(r13)-= [13,20]

_;an(r15) = [15,27]

_an(r17) --[1S, 31]

span(rig) = [20,30]

_;a_(r21) = [25,32]

span(rio) = [10,23]

span(rl2) = [12,26]

span(rl4) = [14,221

span(r16)--[17,24]

span(rls) = [19,29]

_;a_(r_0) = [21,28]

Im_x(C) = {16} and it can be verified that IR(c)I = 9. In an attempt to build a trellis

consisting of 64 parallel subtrellises while satisfying the upper bound of 9 on the maxi-

mum state space dimension, we let d' -- 6. So Sm_x(C) d' = Sm_x(C') = 3. The set

{/: sz(C) > sm_x(C')} = {8,16,24}. However, we find that no subset R' of R(C) exists

satisfying the conditions in proposition 2. Hence we cannot build a trellis consisting of 64

parallel subtrellises for this code without violating the constraint on the maximum state space

dimension. If we choose d' - 5 then we can find a subset R' = {r6, rr, rs, r12, r_5} C_ R(C)

that satisfies all the conditions in proposition 2. Hence choosing the subcode C _ generated

by G - R r we obtain a trellis T for C consisting of 32 parallel isomorphic subtrellises. Each

subtrellis is isomorphic to the minimal trellis for C' which has Sm_x(C') = 4.

o The Trellis with Least

Code

Complexity for the (64, 40, 8)

Let C denote the RM (64, 42, 8) code and (_ a (64, 40) subcode of C. We want to examine

all possible L-section trellises with an aim to find their suitability for decoding. We realize

that if the trellis to be used for decoding purposes has a parallel structure and is composed

of a union of M parallel subtrellises, then M smaller Viterbi decoders can be designed to

process each subtrellis simultaneously in parallel. Therefore the effective complexity is

just that of a single subtrellis plus the cost of obtaining the final decision from each of the

M Viterbi decoders. We determine the value of L which minimizes the effective complexity

with the constraint that the L-section trellis 27 have a maximum state complexity not greater

than Sm_,L((_). This constraint is reasonable because although one can essentially increase

the number of parallel subtrellises without bound the hardware complexity of implementing

the resulting trellis and the cost of combining outputs from subtrellis decoders both increase

exponentially in the state-space dimension of the code.

Thus, we will determine the smallest effective complexity denoted A_ff(L), that can

10
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be achieved with an L-section trellis satisfying the constraint on maximum state dimension

among the choices L = 1,2, 4, 8, 16, 32, 64 and pick that L which yields the minimum A,II(L).

The uninteresting choices of L = 1, 2, 32, 64 were eliminated from consideration by analysis

which is not presented here. Herein, we consider consider the more interesting cases of

L=4,8 and 16.

4.1. L=4, M=16

Let Co = (16, 15,2), C1 = (16, 11,4) C2 - (16,5,8) be the corresponding Reed-Muller

codes, Gi a generator matrix of Ci and Gi/j a generator matrix for the set of coset repre-

sentatives [C_/Cj]. For L = 4 the RM (64, 42) code has a minimal trellis (with 16 parallel

subtrellises) corresponding to the 2-level squaring construction with a state dimension profile

(SDP) {0, 10,10,10,0} (Sm_x,4(C) = 10) and trellis oriented generator matrix

G= (111 1) ®Go/l+

1 1 0 0

0 1 I 0 ® G1/2 +

001 1

I 0 0 0

0 1 0 0 ® G2 (4.7)
0 0 1 0

0 0 0 1

In order to obtain a generator matrix for C, the (64,40) subcode of C, one can deleteany

two of the 64 rows above. The sm_x,4((_) of the resulting code depends on which two rows

we delete. It is easy co see that in order to have the least Sm_x(C,4) which equMs 8 we

must delete any two of the 4 rows among (1111) ® Go/1 obtaining an SDP of {0, 8, 8, 8, 0}

(Sm_x,4((_) = 4). Thus !,n_x((_) = {1,2,3} and R(C) = {(1111) ® G'0/1} where G'o/1 has

dimension 2. Since IR(6)I = 2, we can obtain at most 4 parallel subtrellises in any 4-section

without exceeding the allowable Sm_x.4 of 8. Choosing C' as the subcode of (_ generated by

1100)
G'= 0 1 1 0 ® G1/2+

10 0

1 0

0 1

0 0

0 0

1

°°/0 0 ® G2 (4.8)
1 0

0 1

11
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we can obtain a trellis for (_ as the union of 4 parallel isomorphic subtrellises T'i, i =

0, 1, 2, 3. The complexity parameters of the subtrellises is presented in Table 2. The resulting

computational complexity parameters are

AB(T'i) = 23,296 and AL(T'i) = 16,383

This gives A_]S(4 ) = 23,296 + 16,383 + 3 = 39,682 addition equivalent operations.

(4.9)

4.2. L=8, M=8

Let Co = (8,8,1), C1 = (8,7,2) C 2 = (8,4,4) C3 =(8,1,8) be the correspond-

ing Reed-Muller codes. For L = 8, the RM (64,42,8) code has a minimal trellis (with

2 parallel subtrellises) corresponding to the 3-level squaring construction with a SDP

{0, 7, 10, 13, 10, 13, 10, 7, 0} (sm_x.s(C) - 13) with trellis oriented generator matrix

(1 ®Go,

0 rl ® G1/_
0 _

0 _

1111111

1110000

1011010

0111100

0001111

1100000

0110000

0011000

0001100

0000110

0000011

0000001

+

+

® G2/3 +I8 ® Ga (4.10)

The (64,40) subcode C with the best SDP

any one among the three rows rl ® G1/2.

(8max,8(C) = 11) and thus Zmax(C)= {3,5}

is obtained by deleting the rows r0° ® GoD and

This code (_ has SDP {0, 6, 8, 11, 8, 11, 8, 6, 0}

. By inspection R(C) = {r_ N G1/2, r_ ® G'1/2}

yielding [R((_)I = 5. Thus one can obtain at most 32 parallel subtrellises in any 8:section

trellis for C without exceeding the maximum allowable state space dimension of Sm_x,S((_) =

11. Let C' denote the (64,35) subcode of C generated by G' = G- R(C) with SDP

{0,6, 6, 6, 3,6,6,6, 0}.

Hence one can build a trellis for (_ as the union of 32 parallel isomorphic subtrellises

T'i, 0 _< i < 32. The complexity parameters of the subtrellises is presented in Table 3. The

12
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resulting computational complexity parameters are

AB(T'i) = 6,784, and AL(T'i) = 6,007

This gives A,ff(8) = 6,784 + 6,007 + 31 = 12,822 addition equivalent operations.

4.3. L = 16, M = 4

(4.11)

Let Co = C1 = (4,4,1), C_ = (4,3,2) C3 = (4,1,4) C4 = (4,0, e_) be the correspond-

ing Reed-Muller codes. For L = 16, the RM (64, 42, 8) code has a trellis oriented generator

matrix given by

G = GRM(16,5,8) @ G1/2 _- GRM(16,11,4) @ G2/3 + GRM(16,15,2) @ G3/4- (4.12)

where GRM(n,k,d ) denotes a trellis oriented generator matrix for the corresponding Reed-

Muller code. For L = 16, the RM (64,42,8) code has a minimal trellis (with no

parallel subtrellises) corresponding to the 4-level squaring construction with a SDP

{0,4,7,10,10,13,13,13,10,13,13,13,10,10,7,4,0} (Sm_,16(C) = 13). The (64,40) subcode

with the best SDP is generated by G = G-{r_®G1/2, r_®G1/2} where r_ and r_ are the

two rows with span [2, 15] and [3, 14] in the trellis oriented generator matrix for RM(16, 11, 4).

The SDP of the minimal trellis for C is {0,4,6,8,8,11,11,11,8,11,11,11,8,8,6,4,0}

(Sm_x,16((_) = 11). I_n_x((_) {5,6,7,9,10,11} and R((_) = {r_®G1/2,r]NG2/a} where r_

is the row with span [5, 12] in the trellis oriented generator matrix for RM(16, 5, 8) and ra2

is the row with span [4, 12] in the trellis oriented generator matrix for RM(16, 11,4). Since

]R(_)[ = 3, one can obtain at most 8 parallel subtrellises in any 16-section trellis for

without exceeding the allowable sm_x,16((_) of 11. Choosing C' as the subcode generated by

G' = all- R((_), we obtain a subcode having the SDP {0, 4, 6, 8, 6, 8, 8, 8, 5, 8, 8, 8, 6, 8, 6, 4, 0}.

Hence we can obtain a trellis for (_ as the union of 8 parallel isomorphic subtrellises

T'i, 0 <_ i < 8. The complexity parameters of the subtrellises is presented in Table 4.

The resulting computational complexity parameters are

As(T'i) = 384, and AL(T'_) = 22,783 (4.13)

This gives A_ff(16) = 384 + 22,783 + 7 = 23,174 addition equivalent operations.

4.4. L = 32, M -- 2 and L = 64, M = 1

When L = 32, Smax,32(C ) : 12. The maximum number of parallel isomorphic sub-

trellises possible without exceeding the allowable Sm_x,a2((_) = 12 in any 32-section trel-

lis for the (64,40) subcode C is at most 4. So A_if(32 ) >_ 37,476. When L = 64,

13
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•Smax,64(C ) -- 12. Furthermore, no parallel subtrellises are possible without exceeding the

allowable Sm_x,_4((_)= 12. Hence A_H(64 ) = 198,000.

4.5. Conclusion

By comparing the A_fI(L ) obtained for L = 1,2,4,8, 16,32 and 64 we find that the

non-minimal 8-section trellis has the least effective decoding computational complexity for

the (64, 40) subcode of the Reed-Muller (64, 42, 8) code. This trellis has a parallel structure

with 32 parallel isomorphic subtrellises with each subtrellis having at most 64 states.
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Table-l: DecodingComplexity for the RM(32,16,8) Code

L A(T) Sm_x,L(C)

1 1,048,560 1

2 65,599 64

4 6,847 64

8 4,064 256

16 5,159 256

32 7,995 512

Table 2: Complexity Parameters of 4-section trellis for (64, 38) code

i

dim(S/M)

dim(Di)

dim(Pi)

dim(Si)

diln(Ai)

0 1 2 3 4

0 6 6 6 0

- 10 10 10 10

- 5 5 5 5

- 0 6 6 6

6 6 6 0

Table 3: Complexity Parameters of 8-section trellis for (64, 35) code

i 0 1 2 3 4 5 6 7 8

dim(S_M) 0 6 6 6 3 6 6 6 0

dim(D_) 6 6 6 6 6 6 6 6

dim(P_) 1 1 1 1 1 1 1 1

dim(_i) - 0 3 3 6 3 3 3 6

dim(hi) 6 3 3 3 6 3 3 0 -

Table 4: Complexity Parameters of 16-section trellis for (64, 37) code

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

dim(S_M) 0 4 6 8 6 8 8 8 5 8 8 8 6 8 6 4 0

dim(D_) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

dim(P_) 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0

dim(5_) 0 1 1 3 1 3 3 4 1 3 3 3 1 3 3 4

dim(/_) 4 3 3 1 3 3 3 1 4 3 3 1 3 1 1 0
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